

[CPython Media]

Software Design Specification

Draft 2 (final)

November 14, 2005

[Knights Who Say Ni!]

 Software Design Specification

 Page i

Revisions

Version Primary
Author(s)

Description of Version Date
Completed

Final

Version 1

Andrew Nagel,

Dustin Roberts,

John Burton,

Sam Gawthrop

This is the first version of the design document.

9/22/05

Final

Version 2

Andrew Nagel,

Dustin Roberts,

John Burton,

Sam Gawthrop

This is the second and final version of the design

document.

11/14/05

 Software Design Specification

 Page ii

Contents

1 INTRODUCTION...1

1.1 SYSTEM OVERVIEW ...1

1.2 DESIGN MAP ...1

1.3 SUPPORTING MATERIALS...1

1.4 DEFINITIONS AND ACRONYMS ...1

2 DESIGN CONSIDERATIONS..3

2.1 ASSUMPTIONS..3

2.2 CONSTRAINTS..3

2.3 SYSTEM ENVIRONMENT ...3

2.4 DESIGN METHODOLOGY...4

2.5 RISKS AND VOLATILE AREAS..4

3 ARCHITECTURE..5

3.1 OVERVIEW ..5

3.2 RATIONALE...5

4 HIGH LEVEL DESIGN...6

4.1 CONCEPTUAL VIEW..6

5 LOW LEVEL DESIGN..8

5.1 MODULE ..8

6 USER INTERFACE DESIGN...12

6.1 APPLICATION CONTROL ...12

6.2 SCREEN ..12

Software Design Specification

 Page 1

1 Introduction

1.1 System Overview

JES is a development environment that is used to give students of CS1315 a nice interface in

which to program using Python. Many of the projects that students are assigned involve ma-

nipulation of images and audio files. This functionality is not supported natively in Python,

instead Java libraries are used to perform the actual manipulation of the image and audio

files. This solution works well but it relatively slow. The objective of this project is to re-

place the media components of JES with libraries that use CPython, rather than Java. Once

these libraries are created, students can use any IDE they wish and will no longer be required

to use JES. This should dramatically increase the speed with which manipulation of the im-

age and sound files can be performed

1.2 Design Map

This document contains the detail of how the Media.py system will be designed. There are 5

major sections of the document: design considerations, architecture, high level design, low

level design, and interface design.

Design Considerations will explain the different constraints that will be placed on the design

and the assumptions we have made in order to design the system. It also details the design

methodology we are using, and how we will work around risks, if they arise.

The architecture explains the different software and hardware systems that must be in place in

order for our system to operate correctly.

The high level design is fairly short because the system we are designing is small. It will

include a component diagram of the system.

The low level design will detail the classes in UML class diagrams of the system we are de-

signing.

The interface design will show an example of how the interface will look on a user’s com-

puter.

1.3 Supporting Materials

PyGame: http://www.pygame.org/docs/

wxPython: http://www.wxpython.org/

1.4 Definitions and Acronyms

BMP – Bitmap

CPython – Python implementation written in C

GIF – Graphics Interchange Format

Software Design Specification

 Page 2

GUI – Graphical User Interface

IDE – Integrated Developer’s Envrionment

Java – Object oriented programming language developed by Sun Microsystem

JES – Jython Environment for Students

Jython – Java implementation of Python

Khz – Kilohertz

MPEG – Sound format for computers

PCX – A bitmapped graphics file format

PNG – Portable Network Graphics

PyGame – Media library written in C for the CPython programming language

SDL – Simple DirectMedia Layer

TGA – Targa Bitmap

UML – Unified Modeling Language

WAV – Sound format for computers

WxPython – Windows manager that is cross-platform

Software Design Specification

 Page 3

2 Design Considerations

2.1 Assumptions

It will be assumed that users have downloaded and installed Python version 2.3 from

www.python.org. Also, user’s will provide their own IDE, as JES will no longer be available

for development, since we will no longer use Jython.

The image part of the media system we are building requires the presence of the pygames

Python library installed on both the developer’s and user’s computer, which gives the ability

to load and modify image data. The image file formats supported by the pygames library

include BMP, GIF, PNG, JPG, PCX, and TGA at the very least and possibly more depending

on what other formats are supported by the user’s system. Finally for saving image data only

the JPG format is supported by the library at this time.

The sound part of the system will also require PyGame to be installed on both the user and

the developer’s system. It supports MPEG and WAV playback, and possibly more that are

supported by the user’s system. It will also save in these formats. For optimal sound per-

formance, all files should be 22khz, signed, 16bit stereo wav files. Most other wav formats

can and will be converted to this format when they are loaded, at a possible loss of quality.

The system will only save files to the wav format.

The GUI will use wxPython, which is a cross platform windows manager. The GUI is only

required to support the display of images. The assumption is that wxPython will be available

for the user and developer on whichever platform they choose to use. wxPython is available

on Mac and Windows.

2.2 Constraints

The system must work with CPython, which is a version of python that is written in the C

programming language. There are no specific performance requirements, because the point

of this project is to see if there are significant performance increases from using CPython

over Jython. Also, all functions will be written within Media.py, which will allow transpar-

ency from a current JES user.

The image system and the audio systems must use a C library system as the underlying im-

plementation that allows the system to make actual modifications to the image files. The

reason for this requirement is the speed boost, which is the reason that the implementation is

being moved away from the JAVA implementation in the first place.

2.3 System Environment

The hardware required is the minimum required hardware for Windows XP or Mac OS X.

Although that is a minimum requirement, the faster the processor and the more memory a

user has, the better the computer will perform. The system is being designed to work on x86

and PowerPC platforms, but CPython is platform independent, therefore it should work on

any system that is running Python.

Software Design Specification

 Page 4

Software required is CPython version 2.3 and PyGame version 1.7.1. Any desirable IDE can

be used to program in the python programming language.

The software requires a windowing environment, and wxPython is the library used to imple-

ment the windowing operations. (This library will call local system calls, and interacts with

the operating system and windowing environment that way)

The system should have a sound device and the appropriate drivers that PyGame can hook

into. Most computers will meet this requirement with no changes necessary.

2.4 Design Methodology

Python is an object oriented programming language. Therefore we will use object-oriented

ideas to do the design process. One of the requirements, though, is that all parts of the system

be contained within Media.py, therefore there will not be separate classes. UML will still be

used to do the design part of the system, but class diagrams are not as important as interaction

diagrams.

The most important factor of this particular implementation for images is speed; as such all

design considerations must take the speed of the operation into account. In the image imple-

mentation there are several different methods that will work to do the modifications to the

image’s data. The important point in developing this implementation is the speed of these

several different implementation choices. The choices for implementation will be based on

the documentation provided with PyGame and what options result in the best performance.

2.5 Risks and Volatile Areas

The largest risk we really face is that PyGame will not have the needed functionality to im-

plement all methods. If this is the case, we will extend the PyGame library using C to add the

functionality that we desire. This may require us to scale back our plans for early beta testing

and debugging of the program.

A volatile area is that the SDL library does not support saving sound files. If this is the case,

we will be required to write the files to disk using Python. Fortunately, this is not a large risk

to our group because John Burton has experience in writing WAV files to disk, including

manipulation of headers.

The only volatile area in the image implementation is the lack of any functions pre-existent in

PyGame for the creation of shapes in the image. These functions are provided by the Java

graphics package and since they are no longer going to be provided by the underlying system,

because there is the potential for speed pitfalls in this area. There are functions for the ma-

nipulation of multiple pixel values simultaneously so while moving this functional capability

to the built-in functionality is a risk that is not considered a major one. Nonetheless, it could

require us to scale back the beta release date.

Software Design Specification

 Page 5

3 Architecture

3.1 Overview

The image system resident in PyGame utilizes several layers through which image data can

progress. First there is the basic image class, which is used to load and save image data from

a memory resident form and into a savable image format. The save and load functionality

utilizes Surface objects which are essentially memory representations of an image. It is pos-

sible for us to directly manipulate this image data, but such a task is not recommended, as it is

relatively slow. Finally there is a “surfarray” class that is an array-based representation of the

image. There are two different implementations of this image array. One is a simple 2D

array that stores each pixel value as a single number. This representation would be useful

when modifying a black and white image. The second array implementation is a 3D array

that stores pixel data as a collection of color value for each of the color channels.

For image modification the data stored in an unmapped “surfarray” will be modified. When

the image is to be saved back to a file or requested for view it should be written back to a

Surface object. This write back will only be done when the complete image structure is re-

quested for some reason. PyGame does support the direct modification of the Surface objects

as a linked back-end for a “surfarray”, but this method is considerably slower and we feel that

only writing back to the Surface object when necessary is the best option.

The Sound object will be broken down into sample objects, which will have an index. The

index will point to its location within the sound object.

3.2 Rationale

Speed is the primary rationale for the design consideration decisions we have made in the

image and sound implementations. The speed considerations are based on the documentation

provided with PyGame. We will experiment with different implementations that will have

the same end result, but this fastest method will be tried first as it is suggested by current

documentation of PyGame.

Software Design Specification

 Page 6

4 High Level Design

4.1 Logical View

Developers should notice that Media.Py will use the Python language for all programming,

but it will have to implement third party libraries (written in C) in order to provide all needed

functionality. PyGame will provide all the image and audio manipulation functionality. Nu-

meric will provide advanced math functions that aren’t built into Python (such as square

root). wxPython is included because it is a cross-platform windowing system. Although

PyGame will allow users to display images, the customer has expressed interest in wxPython

for future development with GUIs.

4.2 Process View

N/A

4.3 Physical View

N/A

Software Design Specification

 Page 7

4.4 Module View

N/A

Software Design Specification

 Page 8

5 Low Level Design

5.1 Modules

Sound:

Developers should notice that when any sound is opened, it will be converted into a collec-

tion of samples. Each sample has its own set of functionality, and knows its index number

(where it is located in the sound). Upon opening, all sounds will be converted into 16 bit,

22000 Hz, signed, mono sounds.

Software Design Specification

 Page 9

Images:

Developers should notice that when an image is opened it is stored as a collection of pixels.

Each pixel knows where it is located and has a set of functions associated with it for manipu-

lation. Every pixel is a color; that is why pixels have the get and set methods for the colors.

Additionally, a user can create a color object that is independent of the image. These colors

can be applied to the pixel or multiple pixels.

Data Flow:

Software Design Specification

 Page 10

Images:

Software Design Specification

 Page 11

Sound:

Software Design Specification

 Page 12

6 User Interface Design

6.1 Application Control

The window will be a display of an image. It will use the default operating system wrapper,

and be interacting with the wrapper through the operating system.

6.2 Screen

Approximation of image display in Windows:

This is the GUI displaying a JPEG called skyline.jpg.

Developers do not need to manipulate the GUI in anyway. The GUI should open just as any

windows would open using wxPython. The colors and layout of all GUIs should be the de-

fault layout and color that wxPython provides.

